Gewichteter Gleitender Durchschnittscode


MetaTrader 4 - Indikatoren Gleitende Mittelwerte, MA - Indikator für MetaTrader 4 Der Indikator Moving Average zeigt den mittleren Instrumentenpreis für einen bestimmten Zeitraum an. Wenn man den gleitenden Durchschnitt berechnet, berechnet man den Instrumentenpreis für diesen Zeitraum. Wenn sich der Preis ändert, steigt oder fällt sein gleitender Durchschnitt. Es gibt vier verschiedene Arten von gleitenden Durchschnitten: Simple (auch Arithmetik genannt), Exponential, Smoothed und Linear Weighted. Bewegungsdurchschnitte können für jeden sequentiellen Datensatz berechnet werden, einschließlich der Eröffnungs - und Schlusskurse, der höchsten und niedrigsten Preise, des Handelsvolumens oder anderer Indikatoren. Es ist oft der Fall, wenn doppelte gleitende Durchschnitte verwendet werden. Das Einzige, wo sich verschie - dende Durchschnittswerte verschiedener Typen erheblich voneinander unterscheiden, ist, wenn Gewichtskoeffizienten, die den letzten Daten zugeordnet sind, unterschiedlich sind. Wenn wir von einem einfachen gleitenden Durchschnitt sprechen, sind alle Preise des fraglichen Zeitraums gleich wertig. Exponentielle und linear gewichtete Bewegungsdurchschnitte legen mehr Wert auf die neuesten Preise. Der gängigste Weg zur Interpretation des gleitenden Durchschnitts ist es, seine Dynamik mit der Preisaktion zu vergleichen. Wenn der Instrumentenpreis über seinem gleitenden Durchschnitt steigt, erscheint ein Kaufsignal, wenn der Preis unter den gleitenden Durchschnitt fällt, was wir haben, ist ein Verkaufssignal. Dieses handelnde System, das auf dem gleitenden Durchschnitt basiert, ist nicht entworfen, um Eintritt in den Markt direkt in seinem niedrigsten Punkt und seinem Ausgang direkt auf dem Höhepunkt zur Verfügung zu stellen. Es erlaubt, nach dem folgenden Trend zu handeln: bald zu kaufen, nachdem die Preise den Boden zu erreichen, und zu verkaufen, bald nachdem die Preise ihren Höhepunkt erreicht haben. Simple Moving Average (SMA) Ein einfacher, dh arithmetisch gleitender Durchschnitt wird berechnet, indem die Preise des Instrumentenschlusses über eine bestimmte Anzahl von Einzelperioden (z. B. 12 Stunden) zusammengefasst werden. Dieser Wert wird dann durch die Anzahl dieser Perioden dividiert. SMA SUM (CLOSE, N) N wobei: N die Anzahl der Berechnungsperioden ist. Exponential Moving Average (EMA) Der exponentiell geglättete gleitende Durchschnitt wird berechnet, indem der gleitende Durchschnitt eines bestimmten Anteils des aktuellen Schlusskurses auf den vorherigen Wert addiert wird. Bei exponentiell geglätteten gleitenden Durchschnitten sind die neuesten Preise von mehr Wert. P-Prozentsatz des exponentiellen gleitenden Durchschnitts wird wie folgt aussehen: Wo: CLOSE (i) der Preis des laufenden Periodenabschlusses EMA (i-1) Exponentiell bewegender Durchschnitt des vorherigen Periodenabschlusses P der Prozentsatz der Verwendung des Preiswerts. Gleitender gleitender Mittelwert (SMMA) Der erste Wert dieses geglätteten gleitenden Mittelwertes wird als einfacher gleitender Mittelwert (SMA) berechnet: SUM1 SUM (CLOSE, N) Der zweite und nachfolgende gleitende Mittelwert wird gemäß dieser Formel berechnet: wobei: SUM1 die ist Summe der Schlusskurse für N Perioden SMMA1 ist der geglättete gleitende Durchschnitt des ersten Balkens SMMA (i) ist der geglättete gleitende Durchschnitt des aktuellen Balkens (mit Ausnahme des ersten) CLOSE (i) der aktuelle Schlusskurs N ist Glättungszeitraum. Linearer gewichteter gleitender Durchschnitt (LWMA) Bei gewichteten gleitenden Mittelwerten sind die letzten Daten von größerem Wert als frühere Daten. Der gewichtete gleitende Durchschnitt wird berechnet, indem jeder der Schlusskurse innerhalb der betrachteten Reihe mit einem gewissen Gewichtskoeffizienten multipliziert wird. (I, N) SUM (i, N) wobei: SUM (i, N) die Gesamtsumme der Gewichtskoeffizienten ist. Bewegungsdurchschnitte können auch auf Indikatoren angewendet werden. Das ist, wo die Interpretation der Indikatorbewegungsdurchschnitte ähnlich der Interpretation der Preisbewegungsdurchschnitte ist: wenn der Indikator über seinem gleitenden Durchschnitt steigt, bedeutet das, dass die aufsteigende Indikatorbewegung wahrscheinlich fortfährt: wenn der Indikator unter seinen gleitenden Durchschnitt fällt, dieses Bedeutet, dass es wahrscheinlich weiter nach unten gehen wird. Hier sind die Arten von gleitenden Mittelwerten im Diagramm: Simple Moving Average (SMA) Exponentieller Moving Average (EMA) Glatter Moving Average (SMMA) Linearer gewichteter Moving Average (LWMA) Ich habe im Wesentlichen ein Array von Werten wie folgt: Das obige Array ist Oversimplified, Im sammeln 1 Wert pro Millisekunde in meinem realen Code und ich muss die Ausgabe auf einem Algorithmus, den ich schrieb, um die nächste Peak vor einem Zeitpunkt zu finden verarbeiten. Meine Logik schlägt fehl, weil in meinem Beispiel oben 0.36 die wahre Spitze ist, aber mein Algorithmus würde rückwärts schauen und sehen die sehr letzte Zahl 0.25 als die Spitze, als theres eine Abnahme zu 0.24 vor ihm. Das Ziel ist, diese Werte zu nehmen und einen Algorithmus auf sie, die glätten sie ein wenig, so dass ich mehr lineare Werte. (Dh: Id wie meine Ergebnisse curvy, nicht jaggedy) Ive wurde gesagt, um einen exponentiellen gleitenden durchschnittlichen Filter auf meine Werte anzuwenden. Wie kann ich dies tun Es ist wirklich schwer für mich, mathematische Gleichungen zu lesen, gehe ich viel besser mit Code. Wie verarbeite ich Werte in meinem Array, die Anwendung einer exponentiellen gleitenden Durchschnittsberechnung, um sie herauszufordern, um einen exponentiellen gleitenden Durchschnitt zu berechnen. Müssen Sie einige Zustand zu halten und Sie benötigen einen Tuning-Parameter. Dies erfordert eine kleine Klasse (vorausgesetzt, Sie verwenden Java 5 oder höher): Instantiate mit dem Decay-Parameter, die Sie wollen (kann Abstimmung sollte zwischen 0 und 1) und dann mit Average () zu filtern. Beim Lesen einer Seite auf einige mathematische Rekursion, alles, was Sie wirklich wissen müssen, wenn Sie es in Code ist, dass Mathematiker gerne Indizes in Arrays und Sequenzen mit Indizes schreiben. (Theyve einige andere Anmerkungen außerdem, die nicht helfen.) Jedoch ist die EMA ziemlich einfach, da Sie nur an einen alten Wert erinnern müssen, der keine komplizierten Zustandarrays erfordert. Beantwortet Feb 8 12 at 20:42 TKKocheran: Ziemlich viel. Isn39t es schön, wenn die Dinge einfach sein können (Wenn Sie mit einer neuen Sequenz beginnen, erhalten Sie einen neuen Mittelwert.) Beachten Sie, dass die ersten paar Begriffe in der durchschnittlichen Sequenz wird ein bisschen durch Randeffekte springen, aber Sie erhalten die mit anderen gleitenden Durchschnitten auch. Allerdings ist ein guter Vorteil, dass Sie die gleitende durchschnittliche Logik in die Mittelung einwickeln und experimentieren können, ohne den Rest des Programms zu viel zu stören. Ndash Donal Fellows Ich habe eine harte Zeit, Ihre Fragen zu verstehen, aber ich werde versuchen, trotzdem zu beantworten. 1) Wenn Ihr Algorithmus 0,25 statt 0,36 gefunden hat, dann ist es falsch. Es ist falsch, weil es eine monotone Zunahme oder Abnahme (das ist immer nach oben oder immer nach unten). Wenn Sie ALLE Ihre Daten nicht klassifizieren, sind Ihre Datenpunkte - wie Sie sie darstellen - nichtlinear. Wenn Sie wirklich den maximalen Wert zwischen zwei Zeitpunkten finden wollen, dann schneiden Sie Ihr Array von tmin zu tmax und finden Sie das Maximum dieses Unterarrays. 2) Nun ist das Konzept der gleitenden Durchschnitte sehr einfach: vorstellen, dass ich die folgende Liste haben: 1.4, 1.5, 1.4, 1.5, 1.5. Ich kann es glätten, indem ich den Durchschnitt von zwei Zahlen: 1,45, 1,45, 1,45, 1,5. Beachten Sie, dass die erste Zahl ist der Durchschnitt von 1,5 und 1,4 (zweite und erste Zahlen) die zweite (neue Liste) ist der Durchschnitt von 1,4 und 1,5 (dritte und zweite alte Liste) die dritte (neue Liste) der Durchschnitt von 1,5 und 1,4 (Vierte und dritte), und so weiter. Ich könnte es Zeitraum drei oder vier gemacht haben, oder n. Beachten Sie, wie die Daten viel glatter sind. Ein guter Weg, um zu sehen, gleitende Durchschnitte bei der Arbeit ist, gehen Sie zu Google Finance, wählen Sie eine Aktie (versuchen Tesla Motors ziemlich volatil (TSLA)) und klicken Sie auf Technische Daten am unteren Rand des Diagramms. Wählen Sie Moving Average mit einer bestimmten Periode und Exponential gleitenden Durchschnitt, um ihre Differenzen zu vergleichen. Exponentielle gleitende Durchschnitt ist nur eine weitere Ausarbeitung dieser, aber Gewichte die älteren Daten weniger als die neuen Daten ist dies ein Weg, um die Glättung nach hinten auszugleichen. Bitte lesen Sie den Wikipedia-Eintrag. Also, dies ist eher ein Kommentar als eine Antwort, aber die kleine Kommentar-Box war nur zu klein. Viel Glück. Wenn Sie Probleme mit der Mathematik haben, könnten Sie mit einem einfachen gleitenden Durchschnitt statt exponentiell gehen. Also die Ausgabe erhalten Sie die letzten x-Terme durch x geteilt werden. Ungetestetes Pseudocode: Beachten Sie, dass Sie die Anfangs - und Endteile der Daten behandeln müssen, da deutlich, dass Sie die letzten 5 Ausdrücke nicht durchschnittlich sind, wenn Sie auf Ihrem 2. Datenpunkt sind. Außerdem gibt es effizientere Methoden, diesen gleitenden Durchschnitt (sum sum - älteste neueste) zu berechnen, aber dies ist, um das Konzept von dem, was passiert, zu bekommen. Beantwortet Feb 8 12 at 20:41 Deine Antwort 2017 Stack Exchange, IncAveragesSimple gleitender Durchschnitt DurchschnittswerteSimple gleitender Durchschnitt Sie werden aufgefordert, diese Aufgabe entsprechend der Aufgabenbeschreibung zu lösen, indem Sie eine beliebige Sprache verwenden, die Sie vielleicht kennen. Berechnen der einfachen gleitenden Durchschnitt einer Reihe von Zahlen. Erstellen Sie eine Stateful-Funktionclassinstanz, die eine Periode annimmt und eine Routine zurückgibt, die eine Zahl als Argument annimmt und einen einfachen gleitenden Durchschnitt ihrer Argumente zurückgibt. Ein einfacher gleitender Durchschnitt ist ein Verfahren zum Berechnen eines Durchschnitts eines Stroms von Zahlen durch nur Mittelung der letzten 160 P 160-Nummern aus dem Strom 160, wobei 160 P 160 als Periode bekannt ist. Sie kann implementiert werden, indem eine Initialisierungsroutine mit 160 P 160 als Argument 160 I (P) 160 aufgerufen wird, die dann eine Routine zurückgeben sollte, die, wenn sie mit einzelnen aufeinanderfolgenden Elementen eines Stroms von Zahlen aufgerufen wird, den Mittelwert von (up To), die letzten 160 P 160 von ihnen, rufen Sie diese 160 SMA (). Das Wort 160 stateful 160 in der Aufgabenbeschreibung bezieht sich auf die Notwendigkeit für 160 SMA () 160, sich an bestimmte Informationen zwischen Anrufen zu erinnern: 160 Der Zeitraum 160 P 160 Ein geordneter Container von mindestens den letzten 160 P 160-Nummern von jedem von Seine individuellen Anrufe. Stateful 160 bedeutet auch, dass sukzessive Aufrufe von 160 I (), 160 der Initialisierer, 160 separate Routinen zurückgeben sollten, die 160 nicht den gespeicherten Zustand teilen, so dass sie auf zwei unabhängigen Datenströmen verwendet werden können. Pseudocode für eine Implementierung von 160 SMA 160 ist: Diese Version verwendet eine persistente Warteschlange, um die letzten p-Werte zu halten. Jede Funktion, die von init-moving-average zurückgegeben wird, hat ihren Zustand in einem Atom mit einem Queue-Wert. Diese Implementierung verwendet eine zirkuläre Liste, um die Zahlen in dem Fenster am Anfang jedes Iterationszeigers zu speichern, bezieht sich auf die Listenzelle, die den Wert hält, der sich gerade aus dem Fenster bewegt und durch den gerade addierten Wert ersetzt wird. Verwenden eines Closure-Edit derzeit Diese sma kann nicht nogc, weil es eine Schließung auf dem Heap zugeordnet. Einige Escape-Analyse konnte die Heap-Zuweisung entfernen. Verwenden einer Strukturbearbeitung Diese Version vermeidet die Heapzuweisung des Verschlusses, der die Daten im Stapelrahmen der Hauptfunktion hält. Gleiche Ausgabe: Um zu vermeiden, dass die Gleitkomma-Näherungen aufeinandertreiben und wachsen, kann der Code eine periodische Summe auf dem gesamten kreisförmigen Warteschlangen-Array ausführen. Diese Implementierung erzeugt zwei (Funktions-) Objekte, die den Zustand teilen. Es ist idiomatisch in E, die Eingabe von der Ausgabe (Lesen von Schreiben) zu trennen, anstatt sie zu einem Objekt zu kombinieren. Die Struktur ist die gleiche wie die Implementierung von Standard DeviationE. Das Elixierprogramm unten erzeugt eine anonyme Funktion mit einer eingebetteten Periode p, die als Periode des einfachen gleitenden Durchschnitts verwendet wird. Die run-Funktion liest die numerische Eingabe und übergibt sie an die neu erstellte anonyme Funktion und prüft dann das Ergebnis auf STDOUT. Die Ausgabe ist unten gezeigt, mit dem Durchschnitt, gefolgt von der gruppierten Eingabe, die die Grundlage für jeden gleitenden Durchschnitt bildet. Erlang hat Verschlüsse, aber unveränderliche Variablen. Eine Lösung besteht dann darin, Prozesse und eine einfache Message passing based API zu verwenden. Matrixsprachen haben Routinen, um die Gleitabschnitte für eine gegebene Reihenfolge von Elementen zu berechnen. Es ist weniger effizient Schleife wie in den folgenden Befehlen. Fordert kontinuierlich einen Eingang I auf. Die dem Ende einer Liste L1 hinzugefügt wird. L1 kann durch Drücken von 2ND1 gefunden werden, und Mittelwert kann in ListOPS gefunden werden. Drücken Sie ON, um das Programm zu beenden. Funktion, die eine Liste mit den gemittelten Daten des bereitgestellten Arguments zurückgibt Programm, das bei jedem Aufruf einen einfachen Wert zurückgibt: list ist die gemittelte Liste: p ist die Periode: 5 gibt die gemittelte Liste zurück: Beispiel 2: Verwenden des Programms movinav2 (i , 5) - Initialisieren der gleitenden Durchschnittsberechnung und Definieren des Zeitraums von 5 movinav2 (3, x): x - neue Daten in der Liste (Wert 3), und das Ergebnis wird auf der Variablen x gespeichert und movinav2 (4, : X - neue Daten (Wert 4), und das neue Ergebnis wird auf Variable x gespeichert und angezeigt (43) 2. Beschreibung der Funktion movinavg: Variable r - ist das Ergebnis (die gemittelte Liste), die zurückgegeben wird Variable i - ist die Index-Variable, und es zeigt auf das Ende der Unterliste die Liste gemittelt wird. Variable z - eine Helpervariable Die Funktion nutzt die Variable i, um zu bestimmen, welche Werte der Liste bei der nächsten Durchschnittsberechnung berücksichtigt werden. Bei jeder Iteration zeigt die Variable i auf den letzten Wert in der Liste, der in der Durchschnittsberechnung verwendet wird. Also müssen wir nur herausfinden, welcher der erste Wert in der Liste sein wird. Normalerweise müssen p Elemente berücksichtigt werden, also wird das erste Element dasjenige sein, das durch (i-p1) indexiert wird. Jedoch wird bei den ersten Iterationen die Berechnung gewöhnlich negativ sein, so dass die folgende Gleichung negative Indizes vermeiden wird: max (i-p1,1) oder die Anordnung der Gleichung max (i-p, 0) 1. Die Anzahl der Elemente auf den ersten Iterationen wird ebenfalls kleiner sein, der korrekte Wert ist (Endindex - Anfangsindex 1) oder die Anordnung der Gleichung (i - (max (ip, 0) 1) 1) , (I-max (ip, 0)). Die Variable z enthält den gemeinsamen Wert (max (ip), 0), so dass der Anfangsindex (z1) ist und die Anzahl der Elemente (iz) mid (Liste, z1, iz) .) Wird summe sie sum (.) (Iz) ri wird sie durchschnittlich und speichern Sie das Ergebnis an der entsprechenden Stelle in der Ergebnisliste Verwenden eines Schließens und Erstellen einer Funktion

Comments

Popular posts from this blog

Mechanische Handelssysteme Richard Weissman

Optionen Handel Kurs Bangalore

Markt Welt Binäre Optionen Demo